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TEMPERATURE FIELD IN STUDDED SCREENS
OF VAPOR GENERATOR

A.L. Bychkovskii and A. L. Lubny-Gertsyk UDC 536.212:621.181.61

By approximating the packing in the vicinity of a stud of radius rg by a cylindrical layer of radius R
the complicated field of temperatures in the studs tg(x, r) and the packing tp(x, r) satisfying the Laplace
equation can be written in the form of hyperbolic sine functions (sh(Kx)) and Bessel functions of the first
(J(Kr)) and second (Y(Kr)) kind. Integrating the given temperature field with respect to the radius r we ob-
tain an expression for the average temperatures through the cross section of the stud tg(x) and the packing
tp(x) (in excess of the wall temperature of the tube Tt
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The — sign pertains to tg(x) when C, = 1, while the + sign pertains to ty(x).

Here the characteristic value K is determined as the root of the equation
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where A, and Ag are the heat-conduction coefficients of the packing and stud. The numbers K can also be
determined from a nomogram.

The expressions for the average concentrations of heat fluxes at the stud —Ks(x) and the packing Rp(x)
and the heat flux q averaged over the entire cross section have an analogous form:
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In the expressions (1) and (3)-(5) the field form t;, the ratio of field forms 6 =t, /t;, and the cal-
culated complexes C have the following values:
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Fig. 1. Relative position of isother-
mal surface (A /I) as a function of
the ratio of thermal conduction coef-
ficients of packing and stud (Ap/xs),
the radii of the stud and packing (rg
/R), and the height of the stud (H).
For rg/R: I) 0.556; II) 0.455; III)
0.400. Dashed lines: H = 24; solid
lines: H = 12.
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Here t° is the selected average temperature of the studded
surface corresponding to the fixed temperature t¢ of the flame
or to the thermal flux q; « is the coefficient of radiant heat
transport, proportional to the cube of the absolute tempera-
ture t0; t; is the temperature of the medium flowing through the
tube.

Since the expression obtained for finding the distance of
the isothermal surface from the base of the tube (A) and the
top of a stud () is somewhat cumbersome we are limited to
presenting the relative position of this surface in Fig, 1.

From (1) one can obtain an expression for the average
excess temperatures at the characteristic (calculated) points
at the top of the stud (t%) and packing (tg), the stem of the stud

(t5), and the wall over the packing layer (t%):

7o A sy H .
s =1y H—T +8(C.Cy—1) | = Cs qur, where1.02 < G < 1.12, (9)
s

— A H '+ .
tg,: to[(H— T) +6 (clc9+co)] ~ Cprgq E ,-where.0< Cp < 1.25, (1)

The field of local excess temperatures on the outer wall surface is
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The calculation of multiple variants on a computer demonstrated the possibility of describing the con-
centration of heat fluxes in the stem of a stud (K@) by the function K§ =f(Ag /)\p, rg /R, H/R), the nomo-
gram of which is based on the normative method of calculating the temperatures of the studded heating

screens of vapor boilers.

Simplified equations, transformed from the exact expression (1) to the form of a nflat" wall equal in
thickness to the stud height H, reduce to the right-hand part of Eqs. (9)-(11). Calculations from the sim-
plified equations lead to results in close agreement with experiment.

*In engineering calculations the experimental values of the contact resistance 1/Kg=1-:10"% W /m?-°C

should be introduced:
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CRYSTALLIZATION OF ALLOYS

E. A. Iodko and E. N. Trynkina ‘ UDC 669.18;51

A solution has been found for the problem of two-phase zone formation during crystallization of solids
of extremely simple shape (plates, cylinders, and spheres), taking into account the heating of the melt in
the liquid "nucleus,®

The problem was solved in the "quasimonophasic® approximation, using the concept of the "solid-
crystal fraction® (1) per unit melt volume, The heat and mass transfer equations were supplemented with
terms corresponding to the heat and mass sources within the two-phase zone, These sources are pro-
portional to the change in the solid-crystal fraction I with time at a point with the coordinate n, The rule
for the change in the interface between the diphasic zone and the solid shell is assumed to be known (and
given): n = g(Fy). It is determined by the conditions at the outer surface of the casting, The coordinate
of the interface between the diphasic zone and the liquid "nucleus, " the temperature and concentration
fields in the liquid nucleus and diphasic zone, and the solid-crystal fraction [ in the diphasic zone were
calculated in a computer. It was found that an increase in the initial heating of the melt or the solidifica-
tion rate produces a decrease in the width of the diphasic zone (Fig. 1), With all other conditions equal,
the latter reaches its greatest extent in spherical castings and its smallest in flat castings. This is ob-
viously due to different rates of heat removal from the heated "nucleus" in these two cases. An increase
in the initial carbon content of the melt also markedly increases the width of the diphasic zone,

It was also found that the solid-crystal fraction (I), represented as a function of the relative coordi-~
nate

is virtually independent of time:
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Fig. 1, Width of diphasic zone 6 as a
0.16 function of thickness of solidifying layer
1- ¢ for initial impurity concentration
Cy=0.1. 1)K =15, t; =13.2-107%; 2)
0.08 1.5 and 0.66-10~4 respectively; 3) 0.75
and 13.2+107%; 4) 0.75 and 0.66 -107%.
The solid lines represent a sphere and
= - the dash lines a plate,
9 0.2 0.4 0.6 1€

Donetsk State University. Original article submitted January 20, 1971; abstract submitted April 20,
1971.
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DIFFUSIVE PARTICLE PRECIPITATION IN THE
INLET SEGMENT OF A TUBE*

S. O, Lekhtmakher, N, M. Polev, UDC 533.15
L. S. Ruzer, and S. A. Stoyanova

The convective-diffusion equation has been solved for the case of cylindrical symmetry, taking into
account the influence of the process by which a parabolic velocity profile is established with a uniform
velocity distribution at the input. Since there are no expressions that would be valid over the entire inter-
val, we used formulas obtained for the longitudinal velocity component by solving the Ossian equation and
the modified Schiller method. The transverse component of the velocity was found from the medium-
compressibility condition,

The problem was programmed for computation in a BESM-4 computer., The following values were
selected for the Schmidt number: 1) Sc =10; 2) Sc = 2,206; 3) Sc =0.9.

For air (v = 0.15 cm?/sec), this corresponds to diffusion constants D of 0.015, 0.068, and 0.167 cm?
/sec. The results of the calculation showed that even for Sc = 0.9, the "inlet effectm did not exceed ~10%.
As applied to aerosol particles suspended in air, this means that the influence of the inlet section is slight,

METHODS UTILIZING TWO TEMPERATURE —TIME INTERVALST

V. 8. Vol'kenshtein UDC 536.2.083

We will consider a system of solids composed of plane-parallel plates and a semibounded cylinder
(heat sink), Different methods utilizing twotemperature—time intervals correspond to different composi-
tions for the bodies comprising this system, Two variants of the first method [1] are based on the tem-
perature field of one plate and the heat sink. Two variants of the second method correspond to the tem-
perature field of the three-component system consisting of two plates and the heat sink, The third method
is based on the temperature field of a system composed of the heat sink and three plates, two of which are
metallic. The existence of interrelated methods makes it possible to investigate solids, liquids, powders,
fabrics, and so forth with a single measurement procedure and the same apparatus.

Measurement of thermophysical characteristics by any of the methods in this group reduces to estab-
lishment of two time intervals AT, and AT, corresponding to two given changes in the galvanometer read-
ings AN, =N;~N, and AN, = N;—N; for an instrument connected into the circuit of a differential thermo-
couple. The thermophysical characteristics measured by any method of this group are calculated from
the same formulas: q = h2/4pA'rl; A =beva =(bh/2L)(ch), whereband L are two characteristics of the heat
sink, found in calibrating it. The dimensionless parameters p and ¢ or p and (gh) are taken from the work-
ing tables, which are compiled beforehand from the appropriate temperature-field equations [2] for fixed
values of N, /N;, N,/N;, and N;/Ny; h is the thickness of the layer of material under investigation,

LITERATURE CITED

1. V. 8. Vol'kenshtein, Transactions of the First Conference on Heat and Mass Transfer [in Russian],
Vol, 1, Izd. AN BSSR, Minsk (1962), p. 65.

*Original article submitted September 29, 1970; abstract submitted July 2, 1971.
tLensovet Leningrad Technological Institute. Original article submitted May 28, 1970; abstract sub-
mitted May 3, 1971.
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CALCULATION OF TRANSIENT PROCESSES OF
VAPOR (GAS) FLOW IN A SYSTEM
OF VESSELS

B. A. Arkadrev, S. A. Dizenko, UDC 621.165-501. 22
and V. S. Nemirov

The problem of gas overflow and the filling of gas vessels has a very important practical significance,
in particular for calculations of the dynamic variation in the number of rotor revolutions during the sudden
closing of tubing valves owing to a drop in the load. The solution is complicated by variability of the hy-
draulic resistances, by removal from the vapor (gas) of part of the energy, and by other effects.

If the volume of the line joining two vessels is negligibly small the flow of vapor between them at each
instant can be found from stationary state equations. It is convenient to consider the flow into the vessel
under consideration as positive and flow out of it as negative, In cases when the vapor is moist some mois-
ture can collect in the vessel, part of which evaporates upon a drop in the pressure and must be taken into
account in the flow rate balance,

In order to determine the state of the vapor in the vessel it is necessary to know any two parameters,
for example the enthalpy and the specific volume, which can be determined as a function of the time on the
basis of the laws of mass and energy conservation. In a line joining two vessels the energy at the output
can differ from the energy at the input owing to removal (supply) of part of the energy, depending on the
variable efficiency coefficient,

On the basis presented systems of equations are obtained for finding the principal parameters for an
ideal gas, a superheated vapor, and a moist vapor. Since in all three cases the systems are essentially
nonlinear it is expedient to solve them using a computer, although it is feasible to solve them "by hand."

The method worked out was used for the determination of the time variation in the quantity and effi-
ciency of the vapor enclosed within the cavity of the turbine system following the closing of the regulating
valves. The loss in revolutions of this turbine calculated from the data obtained is 10.8% (324 rpm) and
differs from the result obtained in a turbine test for a drop in the load by 5 rpm, which can serve as in-
direct confirmation of the acceptability of the proposed method.

A calculation of the loss in revolutions of the same turbine by a method used previously gives 18.2%
(546 rpm). Since the permissible loss is limited by the requirements of durability of the rotating compo-
nents and the adjustment of the automatic safety devices comes to 11-12%, the increase in the calculated
value of the loss can serve as a basis for taking constructive measures for its reduction, which leads to an
unjustifiable complication and increase in cost of the turbine. Therefore the proposed method allows not
only a more exact calculation of the dynamic loss in revolutions but in a number of cases (including the one
under consideration) a simplified turbine construction.

1

Original article submitted October 30, 1969; abstract submitted June 25, 1971.
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AXIALLY SYMMETRIC STATIONARY HEAT-CONDUCTION
PROBLEM WITH MIXED TEMPERATURE CONDITIONS

V. N. Grebenshchikov UDC 536.21

The problem is considered of determining the temperature on the half-space boundary z = 0 using the
cylindrical coordinates r, ¢, z. The half-space is considered to be uniform and isotopic as regards its
thermal properties. It is assumed that the thermal characteristics of the material are independent of tem-
perature. At the point (z =h, r =0) a stationaryheat source is located with intensity . Convective heat
exchange takes place with the surrounding medium within the circle of radius R (in accordance with New-
ton's law). A specified temperature is maintained outside the circle of radius R. The axially symmetric
problemis solved. It is assumed that the temperature function satisfies the heat-conduction equation.

The solution of this mixed problem for a half-space is first reduced to the solving of a pair of inte-
gral equations and this in turn is reduced to the solving of a Fredholm integral equation of the second kind
for the auxiliary function G(s):

1

G (s)— —:{% S G(H)ln
o

s--¢
s—t

[ dt=F (s),

where ¢ and k are the heat-conduction and the heat-exchange coefficients respectively,

The distribution law of temperature inside the circle of radius R is expressed in terms of the auxi-
liary function G(s) as follows:

1
2R G(s)ds
ro==3 | Y
/R
To solve the integral equation the kernel is replaced by a degenerate one; to this end the kernel is
expanded into a series of Chebyshev polynomials,
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If the right-hand side of the equation can be expanded into a series of Chebyshev polynomials then the
solution of the integral equation can also be sought as a series of Chebyshev polynomials,

G (9=, GaTon1 ()-
n--1

The coefficients Gy of the series can be determined from the infinite system of algebraic equations

-]
20.R .
Got —— % Grom—in (=1, 2,3 ..,
Tk

n=l

where

(2n--1)2-(2h—1)2—1
(n—1/2)[4 (n—k)2—1] [4 (n-+k—1)"—1]

Wpp=

The system has a regularity parameter given by

8aR ) 2(2n—1)2—1

wk (2n—1)(4n—3)(4n—1) ’

therefore for k > 0.85 R the system is regular, otherwise it is only quasiregular. For an approximate
solution the infinite system is cut off.

| —

An example is given to show the calculations involved and also to show that in practice it suffices to
retain only three terms of the series expansion of the kernel.

Saratov Polytechnic Institute. Original article submitted July 14, 1969; abstract submitted June 24,
1971,
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TEMPERATURE EFFECT OF H;, WAVE
ON THE ABSORBING WALL OF
A RECTANGULAR WAVEGUIDE*

N. I. Kravchenko, V. M. Volkov, UDC 621.317.08:621.372.8
V. D. Kukush, and L. A, Didyk

In order to measure high and superhigh levels of the transmitted microwave power the method of ab-
sorbing walls is the most acceptable since it enables us to reduce the measurement of the conditions of energy
transfer inside the waveguide to the measurement of effects accompanying the transfer outside it with guar-
antee of homogeneity of the waveguide tract,

In the article we consider questions of the rigorous solution of the problem according to the deter-
mination of the temperature on the absorbing wall, and also the time parameters, enabling us to carry out
optimal designing of probes of the transmitted microwave power.

On the example of the principal type of water in a rectangular waveguide we find the dissipative func-
tion for an absorbing wall, and account of the scattering of an electromagnetic wave enabled us to form the
thermal-conductivity equation with inhomogeneous boundary conditions, which physically signify the
equality of the temperatures over the perimeter of the absorbing wall and the waveguide and the convection
from the lateral boundaries of the absorbing wall. The solution of the thermal-conductivity equation is
sought in the form of the sum of a stationary and a nonstationary temperature field by the classical Fourier
method in terms of operators.

As a resulf of the rigorous solution we obtain that the stationary field is represented in the form of
alternating series, investigated on an M-20 digital computer, and the nonstationary field is represented
in the form of a collection of damped thermal waves. The curves of the stationary and nonstationary tem-
peratures on the outer surface of the absorbing wall agree well with experiment. We present the time
constant, the sensitivity, and a suitable length of the absorbing wall, which are necessary for development
of optimal probes for measuring the transmitted microwave power.

SOLIDIFICATION OF AN INFINITE PLATE
IN A MoLD*?

E. A. Iodko and D. M. Maksimenko UDC 669-154:620.746.6.001.24

A method is presented for a numerical solution of the problem of the solidification of a flat ingot in
the mold based on a combination of an analytical solution of the inverse problem of solidification [1] and a
finite-difference approximation of the heat conduction equation for the wall of the mold. In this case it is
possible to realize a system of calculation which is stable even in the absence of solidification of the initial
moment of a layer when the usual methods of calculation are unstable [2].

The solution of the inverse problem of solidification, written in the form of a series [1]

o\ A (Fo) .
b= 3y e (1)

j=0

*Khar'kov Institute of Radio Electronics. Original article submitted September 10, 1970; abstract

submitted January 19, 1971,
tOriginal article submitted March 25, 1970; abstract submitted October 15, 1970.
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where 7 is the coordinate, Fo is the time, and £(Fo) is the coordinate of the solidification front, is repre-
sented in the form

j=0
where
R ds?
Dy=1; Dy=—— . ——— _g.8:
0 1 9 4 Fo GaS;
1 dD; 1 dse

Di, = S? I 4 (1) Dy Dy —2)
= TS { oty ) D) ]

HereS =1-—-fand v = (n—§)/S. An explicit finite-difference approximation is used to calculate the tem-
perature t, at the wall of the mold.

A calculating program was run on 2 Minsk-22 computer in accordance with this system and the kine-
tics were calculated for the solidification of an infinite plate in contact with walls having different thermo-
physical properties and thickness, among them for cast iron and fireclay walls, for a filling of coke-fire-
clay mixture, and for a wall made of thermally insulating tile.

LITERATURE CITED

1. E. A. Iodko, Inzh.-Fiz. Zh., No. 7 (1963).
2. L. I. Rubinshtein, Stefan's Problem [in Russian], Zvaizgne (1967).

LINEARIZATION OF A NONSTATIONARY HEAT-TRANSFER
PROBLEM BY A PERTURBATION TECHNIQUE

V. L. Chumakov UDC 536.24

A procedure for the approximate solution of the nonstationary heat-conduction equation with nonlinear
boundary conditions is illustrated by treating the problem of the heating (cooling) of solids by radiation and
convection simultaneously for a constant ambient temperature. The gist of the method is the following.

For the boundary condition
(grad ©); = Bi (1—By; )4k (1—6}) 0
the parametric function ®(®y, q) is introduced with the linearization parameter g and the perturbation
parameter e: '
(grad @) = Biy (9) [ +e@ (8, ) — 6 ], (2)
where the equivalent relative heat-transfer coefficient is
Bi_=Sk (I-++p+g), p=Bi/Sk.

The parameter ¢ measures the size of the " perturbing" nonlinear complex ¢
8y —8h—q(1—8y)
Fp g
in comparison with unity. For & =1, condition (2) is identical with (1), and for & = 0 we have the "unper-
turbed" linear condition in the form of a boundary condition of the third kind, The parameter q should be

O, 9=

Institute of Technical Thermophysics, Academy of Sciences of the Ukrainian SSR, Kiev. Original
article submitted December 17, 1970; abstract submitted March 25, 1971.
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chosen in such a way as to minimize the effect of the function & on the solution of the problem. It is con-
venient to take g as the mean value of the polynomial (@ + @2 + @%.

The first step (zero approximation) in the solution of the original problem is to find ®;, the solution
of the linearized problem (g = 0). Subsequent approximations @y, (m =1, 2,...) are constructed by the
small parameter method.

In the recurrent sequence of similar linear boundary value problems for @, the expressions for the
parametric functions

. 1 gD
Cr=® O O -+ Oy ="y (m)

e =8
g==0

are considered as variable ambient temperatures which permit the solution for @, (m =1, 2,....) by
Duhamel's theorem,

Comparison of reference data for a wide range of Sk values with numerical solutions shows that the
proposed method is accurate enough for engineering purposes. In all the examples considered the érror in
the first approximation does not exceed 1-1.5%. The presence.of a convective heat flux (p > 0) increases
the accuracy of the determination of the temperature distribution.

The generality of the nonlinear problem to which the proposed method is applicable is limited by the
requirement that the linearized form of the problem have a solution.

SOLUTION OF GENERAL NONLINEAR PROBLEM
OF UNSTEADY HEAT CONDUCTION BY
SMALL-PARAMETER METHOD

L. A. Kozdoba and V. L. Chumakov UDC 536.21

In the general nonlinear problem the dependence of the thermophysical characteristics of materials
on the temperature of the internal and external heat sources is taken into account. Three different non-
linearities can be taken into account, even if they are considerable, provided that one adopts suitably
selected perturbation functions for (¢, ¥).

The solution of the nonlinear problem is sought in the form of a function £{6,,(Fo), ¢} whichrepro-
duces the nonlinearity of the boundary condition (6 is dimensionless temperature; m denotes the medium),
The heat-conduction coefficient (L) and the volume specific heat (C) are given by

3 B) . .

C(8) = [a, -+ e (9)] ;g— L ®)=[a,+ e (8)] 7’; : (1)
where g;, a, are approximation coefficients which can be determined by using the conservation condition
of the weighted-mean values of L. and C within a specified range of temperatures; ¢ is the perturbation
parameter (0 < g < 1),

If ¢ =1 the expressions (1) take fully into account the actual laws for L(6), C(6). In the complete
article the small-parameter method was applied in the case in which the solution is known in the first
approximation either of another nonlinear or of alinear equation with variable or constant coefficients for
the unsteady problem. Compared with numerical solution an example of heating a plate by convection and

Institute of Technical Thermophysics, Academy of Sciences of the Ukrainian SSR, Kiev. Original
article submitted April 24, 1970; abstract submitted May 10, 1971.
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radiation simultaneously has shown that after only two approximations the maximal error does not exceed
2%. The thermal characteristics of the material and the nonlinear boundary condition depend essentially
on temperature; it was, therefore, not possible to apply the standard small-parameter procedure.

APPLICATION OF THE SMALL-PARAMETER METHOD TO
THE SOLUTION OF THE HEAT-CONDUCTION PROBLEM
WITH TEMPERATURE-DEPENDENT HEAT SOURCES

L. A. Kozdoba and V. L. Chumakov UDC 536.21

A procedure was given for solving the nonlinear problem of unsteady heat conduction in the case in
which the heat sources were distributed uniformly by volume and their specific thermal capacity (w) was a
function of time and depended strongly on the temperature,

One represents w in the form of a product,
wlr, T(x, Dl=p (1) W(T), (1)

where W(T) is approximated within the given temperature range by a first-degree polynomial
Py (Ty=Wo+WiT. (2)

The coefficients W, W, can be determined by using any method of function approximation (say, the
method of least squares).

If w is written in the form

w=P (v) [P, (T)+e9 (T)], 3)

then (T) is the perturbation function and ¢ is the perturbation parameter (0 = ¢ = 1). For & =1 the ex-
pression (2) reproduces exactly the given w and for & = 0 the function w is approximated by the linear func-
tion (2}.

Subsequently, the standard procedure of the small-parameter method is applied; then the solution in
the zero approximation is in fact the solution of alinear problem witha uniformly distributed source whose
thermal capacity depends on temperature and also in an arbitrary manner on time,

The preliminary approximation w(T) enables one to employ the small-parameter method to solve non-
linear problems with an essential nonlinearity in w(T).

To illustrate our considerations an example was provided of heating a plate by the Joule effect with
constant voltage of the voltage source, :

B

@M= faT—Ty

where o, 8, T; are given constants.

A comparison with the numerical solution has shown that the error of the solution with two approxi-
mations does not exceed 1-2%. A linear approximation of w(T) or a linearization of w by means of its
mean-integral value results in errors of 11 and 32% respectively.

Institute of Technical Thermophysics, Academy of Sciences of the Ukrainian SSR, Kiev. Original
article submitted March 23, 1970; abstract submitted May 10, 1971.

119



WORK OF STIRRING A LIQUID WITH GAS BUBBLES*

E. S. Geskin UDC 532.529.5

The rate of heat and mass transfer during the ascent of gas bubbles through a liquid can be evaluated
by the displacement work, i.e., the work of stirring the liguid. The work put in for generating a gas bubble
and then expanding it during injection is expended inovercoming the atmospheric pressure, in displacing
the liquid, i.e., in increasing its own potential energy, and in increasing the kinetic energy of the liguid.
The last two components of the work will be lost on stirring the liquid. The increment of potential energy
is equal to the work of Archimedes forces, which determine the ascent of a bubble, and this energy is also
lost onstirring. Thetotal work of stirring Ain an isothermal system is determined by the relation

A=2GRT In Podthy +Ww,
. Py
where G is the gas mass, T is the system temperature, h is the depth at which a cavity is formed, vy is the
specific gravity of the liquid, P, is the atmospheric pressure, R is the gas constant, and W is the incre-
ment of kinetic energy in the liquid due to expansion of the gas,

The derived formula is a refinement of already known formulas which are based either on the work of
expansion or on the work of Archimedes forces alone and which, therefore, yield results too low by one
half,

The value of A can be used for estimating the rate of heat and mass transfer in the liquid during the
ascent of bubbles, which is very important in the evaluation of many technologies,

As an illustration of such estimates, a comparison is made between the stirring rate with an asso-
ciated gas and with an unassociated gas in a liquid; furthermore, the interaction between a gaseous oxidizer
jet and the hearth of a steelmaking furnace is also analyzed. The total work of stirring the hearth with such
a jet is much greafer than the initial kinetic energy of the jet and, therefore, most of the work of stirring
comes from the thermal energy of the oxidation reaction,

OPTIMUM CONTROL OF COOLING OF A
HOLLOW CYLINDERT

D. V. Mal'tsev UDC 536.24

A hollow cylinder of inner radius 1 and outer radius [ is examined in the article, The cylinder is un-
der the influence of an axially symmetrical temperature field T(r, t) which does not vary in the circum-
ferential and axial directions but is an arbitrary function of the radius r and the time t.

The cylinder has a null initial temperature and at the time t = 0 heat exchange begins at the inner and
outer cylindrical surfaces with the media which have the temperatures T;(t) and T,{t), respectively.

The end sections of the cylinder are fastened securely. The radial stresses are assumed to be equal
to zero at its inner and outer surfaces.

Deformation of the cylinder can be controlled by creating a suitable program of cooling the outer
cylindrical surface.

*Metallurgavtomatika Ul' yanovsk State Pedagogical Institute, Dnepropetrovsk. Original article sub-
mitted October 14, 1970; abstract submitted January 19, 1971.

tOdessaEngineering-Construction Institute. Original article submitted April 1, 1970; abstract sub-
mitted February 23, 1971,
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The radial component of the deformation is designated as g, (r, t), while we take as the safe possible
deformation in this direction Si“kr = const, so that g.p(r, t)=< epp. The program of cooling (control function)

Ty(t) must be determined in such a way that the functional
Lo
J= S e — e (r, 0] rar,

i
which characterizes the deviation of the deformation across the thickness of the cylinder from the given

€%, 18 minimum by the time tq,.

THEOREM. In order that the functional J reach a minimum for the control T, = T# and the function

grp(r, To) corresponding to it, it is necessary that the function T,(Fo) satisfy the equation
4

'f fe—t,, (7, Fo)| Q, () rdr=0, (1)
1

T,(Fo) being an arbitrary discrete-continuous function,

As a result of the solution of the stated problem it is shown that the most favorable conditions for a
cylinder will be conditions where the outer surface of the cylinder is cooled according to the function

Ty (Fo) = [AFo 4T, (0)] exp [—ay} Fo] . (2)

The constant A is determined from Eq. (1) upon substitution of (2) into it and depends on the geo-
metrical and thermophysical parameters of the cylinder, and on the initial temperature and thermal state
of both the inner and outer cooled surfaces.

IMPURITY-ATOM DISTRIBUTION IN A
SEMICONDUCTOR DURING DIFFUSION
INTO A SLIT IN A MASKING FILM

Yu. ¥. Blinov and D. A. Sechenov UDC 539.219.3:539.293.001.24

One of the major stages in the fabrication of semiconductor devices and integrated circuits is local
diffusion of impurities into the semiconductor through a window in a protective mask on its surface.

This article considers the impurity-atom distribution in a semiconductor during diffusion from a
constant source into a window in a masking film. Since the impurity-atom distribution in the center of
the slit is described with high accuracy by the supplemental error function when the slit is sufficiently wide
this makes it possible to consider the solution to the composite boundary problem at the semiplane for the
diffusion equation, '

H

Use of the Viner— Kopf method permits the composite boundary conditions at the semiconductor sur-
face to be reduced to homogeneous conditions of type I or II. Using the Laplace transform and the Fourier
sine and cosine transforms, a solution to the problem at hand is then found in explicit form.

Analysis of the expressions obtained shows that they are valid when the slit width is W = 8VDt, where
D is the diffusion constant and t is the time. This article gives graphs representing the impurity-atom
distribution functions both in the vicinity of the slit and in the region under the masking film. The results
obtained can be used for calculation of the electrophysical characteristics of diffusion layers and elements
of integrated semiconductor circuits, as well as for solution of a number of thermal-conductivity problems.

Taganrog Radiotechnical Institute. Original article submitted October 26, 1970; abstract submitted
February 10, 1971.
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IMPURITY-ATOM DISTRIBUTION DURING LOCAL
DIFFUSION FROM A CONSTANT SOURCE INTO
A NARROW SLIT*

Yu. F. Blinov and D. A. Sechenov UDC 539.219.3:539.293.001.24

This article considers the impurity-atom distribution in a semiconductor during local diffusion from
a constant source into a narrow slit. The slit is considered narrow when its width is W < 8VDt, where D
is the diffusion constant and t is the time,

Analytic solution of the two-dimensional diffusion equation when the diffusant concentration in the
slit region is given and the amount of impurity outside the diffusant stream is zero (a masking film on the
surface of the semiconductor) involves considerable mathematical difficulties.

Analysis of the characteristics of the impurity distribution near the edge of the masking film with a
slit width W >> 8VDt made it possible to reduce the composite boundary problem to a homogeneous problem
with approximate boundary conditions of type I, for which an analytic solution was found with the Laplace
transform and the Fourier sine transform. The diffusion-equation solutions obtained were shown to be
suitable for description of the impurity-atom distribution during diffusion from a constant source into a
slit of width W = 0.4VDt. At smaller slit widths, the impurity distribution in the semiconductor cor-
responds to diffusion from a cylindrical source located at the surface of the semiconductor.

The results obtained can be used for calculation of the electrophysical characteristics of diffusion
layers and elements of integrated semiconductor circuits,

EFFECT OF TEMPERATURE PROFILE IN A
PERMEABLE THERMOELECTRIC
REFRIGERATING BATTERY ON

ITS ENERGETIC CHARACTERISTICST

G. K. Kotyrlo and G. M. Shchegolev UDC 536.12

The principal efforts in improving the efficiency of thermoelectric devices are directed toward the
discovery of new thermoelectric materials and toward improving the technology of manufacturing thermo-
elements,

A new kind of effect on the energetic efficiency of thermoelectric devices is examined in the article,
Its essence consists in the fact that the supply (or removal) of the bulk of the heat to the material of the
thermoelement branches is accomplished not through the surface of the junctions but within the branches,
which are made permeable to the cooling substance or heat carrier (coolant) in the case when the thermo-
element is operated as a generator of energy.

Because the inner heat-exchange surface of permeable thermoelements can be extremely developed,

*Taganrog Radiotechnical Institute. Original article submitted October 26, 1970; abstract submitted
February 10, 1971.

T Institute of Technical Thermophysics, Academy of Sciences of the Ukrainian SSR, Kiev. Original
article submitted December 9, 1969; abstract submitted May 25, 1971,
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heat exchange between the circulating liquid (gas) and the solid material takes place at small temperature
differences, i.e., almost reversibly.

Having examined the temperature curves in the material of monolithic and permeable branches, the
properties of such thermoelements are easy to represent, The temperature profiles in both cases have a
nonlinear nature, The temperature gradients at the junctions, and therefore the amount of heat leaving the
hot junctions and entering the cold junctions as aresult of the thermal conduction of the material of the
branches, will differ,

In the case of monolithic thermoelements the distortion of the temperature curve is caused by the
liberation of Joule heat, and the temperature gradients increase in the direction from the hot junctions to
the cold. In permeable thermoelements, owing to the supply of heat from the cooling substance to the ma-
terial of the branches, the temperature curve is even more distorted within the volume of the thermoele-
ment and the amount of heat entering the cold junctions due to thermal conduction is increased in compari-
son with monolithic thermoelements, Having written the expression for the cooling coefficient in the form

A
Qp _tg—a —Ww

14
one can see that the greater the angle o (the angle formed by the tangent to the temperature curve and the
axis normal to the surface of the hot junction), the greater the cooling coefficient. In this expression Qph
is the Peltier heat liberated at the hot junctions and W is the applied power, Thus, a ventilated cooling
thermoelement will be more economical than one which is not ventilated, other things being equal.

€ = y

In order to conduct a quantitative analysis of the operation of permeable thermoelements a method
was developed for their calculation, on the basis of which it is assumed that the cooling substance enters
the thermoelement from the side of the hot junctions, the temperature of which is maintained equal to the
initial temperature of the coolant. The removal of heat from the coolant takes place within the thermo-
elements, while the Peltier effect at the cold junctions is compensated for only by the heat arriving there
by means of the thermal conduction of the material.

The calculations which were conducted for a permable thermoelement and its comparison with 2 mono-
lithic thermoelement showed the advantages of a ventilated thermoelectric refrigerator with respect to
energetic indices in application to several cooling systems.

EFFECT OF RADIATION AND OF A TEMPERATURE
JUMP ON THE COOLING OF A THIN WIRE IN
A GAS LAYER

A. S. Umanskii and Yu. A. Gorshkov UDC 536.12:23

The article deals with the transient problem of cooling in the case of a thin rod (wire) placed co-
axially inside a gas-filled cylinder; the boundary conditions stipulate a temperature jump at the rod sur-
face (a so-called Knudsen jump) and a radiative heat transfer from the rod to the cylinder wall.

An exact solution to the problem is obtained and the effects of the temperature jump at the gas— wall
boundary as well as of the radiation on the characteristic cooling time of the system are analyzed.

Approximate analytical expressions are obtained for the characteristic times of the system (within an
accuracy down to the terms of second-order smallness):

x= A 4 AR+ 8-

Institute of High Temperatures, Academy of Sciences of the USSR, Moscow. Original article sub-
mitted September 16, 1970; abstract submitted June 14, 1971,
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Here xg ~(3/4 + i)w[l—(72/25)(3 + 4i)(C1/Crl)y2]; i=1,2,... are the eigenvalues of the problem without
consideration of the radiation and the temperature jump;

0’873 8R.
) o~ 1 2.
Mrag= T TR Ry
34 Ci12 1 8R,
M — 2 k. =L — 2
AJ'U‘ P K I:Rl Cz] R " 3yaR,

where T is the absolute temperature of the outer surface of the system, R; and R, are the radii of the rod
and of the cylinder respectively, C,/C, is the ratio of the volume specific heats of the rod material and
the gas, and Ky is a constant which determines the magnitude of the Knudsen temperature jump and
which depends on the coefficient of thermal accomodation as well as on the thermophysical parameters of
the system — it is defined as for steady-state conditions. The correction for the temperature jump con-
tains, besides the parameters which determine the magnitude of the steady-state temperature jump, also
the ratio of volume specific heats of the rod material and the gas.

RATE OF BLASTING ON A SOLID PARTICLE
IN A PULSATING GAS STREAM

V. S. Severyanin and 8. G. Ushakov UDC 533.6:662.61,

One method of intensifying the burning of a solid or a liquid fuel is by the use of so-called pulsating-
combustion chambers. As of now, however, the aerodynamic process conditions under which fuel parti-
cles burn in a pulsating stream are still not quite well understood.

The article presents an analysis of the equation of motion for a spherical solid particle not subjected
to external forces in a one-dimensional gas stream going through forced sinusoidal pulsations, and a solu-
tion to this equation obtained with the aid of a digital computer is shown. Among the dimensionless param-
eters varied here over wide ranges are not only the physical particle and gas constants but also the refer-
red particle diameter as well as the amplitude of the stream velocity and the frequency of pulsations. Also
the adequate parameters, namely the initial particle velocity and the constant component of the stream
velocity, are analyzed by a variation of the initial conditions. '

On the basis of the calculated formula for the dimensionless rate of biasting on a particle as a func-
tion of time the amplitude—phase characteristics of particle vibrations are plotted versus the governing
parameters,

Even for sufficiently fine particles (30-50 p) within the range of moderate acoustic frequencies char-
acteristic of pulsating-combustion chambers (180-300 Hz), the pulsations of the stream velocity are uti-
lized 70-80% when the continuous blast on the particles is negligible. The phase shift (during steady-state
pulsations of the particles) is determined uniquely by the gain parameter B = 3vp /4wp,8’, increasing as
the particle size § and the gas pulsation frequency w decrease (v and p, are the kinematic viscosity and the
density of the gas respectively; p, is the particle density). On the basis of the calculated results, the fol-
lowing formula is proposed for determining the effective rate of blasting on a particle with a pulsating

stream in a process of duration 7;
g2
']/'2‘I‘v

Weff =@ o

where w = w;, + Vay ; Wy is the initial velocity of a particle, vayisthe constant component of the gas velocity,

A is the damping coefficient for the initial velocity (characterizing the duration of the transient), v, is the
amplitude of the gas velocity, and z is the relative amplitude of the blast rate,

Ural Branch Dzerzhinskii All-Union Scientific-Research Thermotechnical Institute, Chelyabinsk,
Original article submitted February 19, 1971; abstract submitted July 16, 1971.
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ON THE ROLE OF ADSORBED GAS DURING BOILING

Yu. G. Ershov and v. I. Khrenov UDC 536.423.1:66,046.7

For the purpose of studying the effect of adsorbed gas on the boiling process, experiments were per-
formed in filling cavities held in a liquid for a long time and after a short boiling period. Conical capil-
laries fused af one end, 0.24-10.0 mm long and with an orifice diameter 0.004-0.18 mm, were used as test
models. The tests were performed with distilled water, transformer oil, and 20% NaCl solution. It is to
be noted that this range of capillary orifice diameters covers the actual cavities on metallic surfaces where
heat transfer occurs.

An analysis of the experimental data leads to the following conclusions:

1) as the diameter of a capillary becomes smaller, the capillary fills up faster (the relative fill
height h/d increases); ‘

2) the smaller the surface tension of the liquid and, thus, the better the wettability is, the sooner
will the capillary be filled with the liguid;

3) the magnitude of the diameter affects the rate of filling particularly strongly within the range up to
50 ;.

4) the column height as well as the rate of rising are affected by the length of a capillary at a constant
orifice diameter or, which is equivalent, by its conicity d /I: the obtained data have shown that the
rate at which a liquid fills capillaries of the same diameter is directly proportional to their coni-
city, at least within the range of angles from 0.08' to 8°00"'.

It ought to be mentioned that one important characteristic of conical cavities, which distinguishes
them from cylindrical ones, is that the former are necessarily filled with liquid at a wetting angle 6 = 90°,
Since in a conical cavity there can be no equilibrium between the trapped gas and the liquid, hence any dis-
placement of the interphase boundary results in a smaller curvature radius of the meniscus and thus, in
turn, an increase of the pressure above it as well as of the diffusion rate and in a further displacement of
the interphase boundary. In the case of long (several centimeters) cylindrical capillaries, on the other
hand, such an equilibrium between phases is possible because of the saturation of the liquid in a capillary
with air.

All this is valid for liquids which wet a solid surface, i.e., form with it an angle @ < 90°. Surface
—~liquid combinations with an angle 6 > 90° are extremely rare in practice, One may hypothesize that
there exist no solid surfaces which are not wettable by a liquid (at least by a boiling liquid), because such
surfaces are to some extent oxidized by the liquid (produce a chemical compound with it) and oxidized sur-
faces are wettable. The difference, evidently, lies only in the degree of wettability, i.e., in the rate at
which an adsorbed gas is removed by diffusion, by dissolution, or by the formation of surface oxides in
the presence of that gas,

In this way, an adsorbed gas trapped in a cavity by a liquid at the heating surface can only at the very
beginning serve as a nucleus of vapor formation during boiling. Since this gas can easily be removed by
various methods (artificial cavitation, holding the heat-transfer surface in the liquid for a long time, sub-
jecting the solid surface to high pressure, or, finally, brief boiling) and, therefore, one may assume
that the main source of vapor formation on a solid surface is the appearance of a gas phase when this sur-
face interacts with the liquid.

V. I. Lenin Power Institute, Ivanovo. Original article submitted October 26, 1970 ; abstract sub-
mitted June 15, 1971,
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CALCULATING THE LUMINOSITY CHARACTERISTICS
OF LIGHT SCATTERING MEDIA, I

K. S. Adzerikho and V. P. Nekrasov UDC 536.3:536,52

The article deals with an analysis of the effects which the optical properties of a layer (optical thick-
ness, quantum survival probability, dispersion indicatrices, size distribution of particles) and which the
boundary conditions have on the luminosity of test objects when this luminosity is calculated by various
methods. A comparison of the numerical results obtained for the emissivity of a plane layer by various
methods of calculation is useful in establishing the applicability range of each method and in choosing the
most suitable one for any given practical case, «

When interpreting experimental data in ferms of a certain relation involving the emissivity of a light
scattering layer, itiscommonto introduce a number of semiempirical corrections. This is, evidently,
because the effect of one or another parameter is not accounted for when the luminosity of a light scattering
medium is analyzed. In this article the problem concerning the luminosity of light scattering media is
treated rigorously in the Schwarzschild—Schuster approximation, considering the optical characteristics
of the medium as well as the boundary conditions. The following expression is taken as the indicatrix of
the radiation scatter into a volume element:

p(u, W) =a+2(l —a)d(u—np’),

where § is the delta function, « =28, § is the hemispherical backscatter factor, and u = cos §, Such a re-
presentation describes qualitatively the process of radiation scatter at particles whose size is comparable
to or larger than the wavelength, while, at the same time, it reduces the original equation to an equation
of radiation transmission with a spherical radiation indicatrix. For optical thicknesses 7, = 5 the emissi-
vity of a light scattering layer depends considerably on the parameter 8, which determines the elongation
of the scatter indicatrix. A study of this relation makes it possible to eatablish the characteristic dimen~
sions of particles in a medium at known quantum survival probabilities and radiation wavelengths.

The solution, in the Schwarzschild—Schuster approximation, to the equation of radiation transmission
through a medium with uniformly distributed radiation sources is used here for determining the angular
distribution of luminosity in the layer. In the case of a semi-
infinite medium, the angular distribution of emissivity is defined
rather simply by the following expression;

Il

e (W) = (1 -+ 2u)(k 4 207",

0.8

where k = {1 + 2[3}\/(1—)\)]1/2 and A = o /(% + 0)is the quantum sur-
vival probability, A comparison of specific calculations accord-
ing to this formula with the exact solution to the equation of radia-
tion transmission indicates that this formula is very accurate.

Its validity for the case of small optical thicknesses is demon-
strated in Part II of this article.

0.6

0.4

A thorough analysis of the emissivity of a light seattering
layer, as a function of the optical properties of the medium, has
made it possible to construct a nomogram convenient for practical
determinations of the hemispherical emissivity for layers of

0.2

0 N finite optical thickness (Fig. 1). It is worthwhile to use this
Fig, 1. Nomogram for determining nomogram for determining the spectral emissivity characteristic
the hemispherical emissivity of a of a layer and, thus to reduce considerablythe amount of com-
finite light scattering layer. putation effort.

Institute of Physics, Academy of Sciences of the Belorussian SSR, Minsk., Original article sub-
mitted July 7, 1970; abstract submitted January 27, 1971.
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CALCULATING THE LUMINOSITY CHARACTERISTICS
OF LIGHT SCATTERING MEDIA. II%*

K. S. Adzerikho and V. P, Nekrasov UDC 536.3:536.52

In order to confirm the validity of the results obtained in the first part of this article, the solution to
the equation of radiation transmission is analyzed for the case of a medium with uniformly distributed
sources and considering scatter by single reflections, A comparison of numerical results according to
the formula obtained here at 7, = 0.05 with those based on relations in Part I indicates that the latter are
valid. It appears, furthermore, that, within a 5% error, the normal emissivity under single reflections
may be calculated up to I = 28x A(1—A + 28A) = 0.6 inclusive (8 is the hemispherical backscatter factor and
A is the quantum survival probability). As A decreases, the validity range of calculations based on single

reflections widens,

The problem concerning the luminosity of a light scattering medium of finite optical thickness is also
solved by the method of spherical harmonics in the P,-th and P;-th approximation, It is shown that for
determining the constants in the solution one must use boundary conditions of the Marshak kind. It is de-
monstrated by way of specific calculations that in the P,~th approximation only the hemispherical emissivity
can be calculated with a sufficiently high accuracy. The P,-th approximation improves the accuracy to
almost twice as close (see Table 1). As in the P,-th approximation, the accuracy of calculations increases
as the guantum survival probability becomes higher. The calculation of the normal emissivity of a layer
in the P;~th and the P,-th approximation yields a 20-25% error, which indicates how slowly convergent the
method of spherical harmonics is when used for caleulating the angular distribution of radiation leaving a
layer. Among the decisive advantages of the method of spherical harmonics is the feasibility of using it
when the geometry of a medium is nonplanar,

TABLE 1. Values of the Hemispherical Emissivity for a Semiin-
finite Layer in the P,-th Approximation

! ! 0,4 ! 0,5 0,6 0,7 i 0,8 0,9
e 0,847 | 0,805 0,754 0,690 0,605 0,471
A (%) 3,1 2,8 2,7 2.4 ’ 2,1 1,9

STRESS FIELD IN A WEDGE-SHAPED MASS
WITH A CONCENTRATED INTERNAL FORCEY

R. V. Tedeev UDC 532.12

The article deals with the action of a vertical force (P) and a horizontal force (Q) concentrated inside
an infinitely long wedge with an arbitrary angle and in a state of two-dimensional strain (Fig. 1). In polar
coordinates the stress components (radial ¢y, tangential ¢y, and shearing 7.4) and the displacement com-
ponents (radial ¢ and tangential n) are expressed as follows: ,

1 e 1 &P i) a < 1 o )

>

- = T Gg=— Tp=— o o
o r or P i % = a2 9 ar \ r a0

*nstitute of Physics, Academy of Sciences of the Belorussian SSR, Minsk., Original article submitted
July 30, 1970; abstract submitted January 27, 1971.

tInstitute of Geophysics, Academy of Sciences of the USSR,‘ Moscow. Original article submitted Dec-
ember 22, 1970; abstract submitted August 25, 1971.
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where G is the shear modulus, v is the Poisson ratio, and ¢ is an arbitrary biharmonic function.

(1)

In order to solve the problem, the biharmonic function is put in the form
b = (PF — DY) £ ¥, (2)
Here the function
Pt — @0 = r? ? [cos mp (a® ch my, + B%sh my - ¢ ch my, cos 2, + C* sh my
0

x sin 2y — d¥ ch my sin 2y - D sh my, cos 2x) - sin mp (b* sh my — A* ch my
—F-¢* sh my sin 2y — C* ch my, cos 2y + d* sh my cos 2y, + DF ch my, sin 2)] dm (3)
is the Kelvin solution for a force applied within an infinite plane, while the function

oo

P = r2 ( [cos mp (a* ch m8 + B* sh m8 + c* ch m8 cos 26 ++ C* sh mb
0

X sin 28 — d* ch m8 sin 28 - D* sh m8 cos 28) - sin mp (4* sh m& — A* ch m§
+ ¢* sh m8 sin 28 — C* ch m§ cos 28 - d* sh m8 cos 26 -+ D* ch m8 sin 28)} dm (4)

represents another biharmonic function added to the Kelvin solution and extends the solution to a wedge.
The following designations have been made in (3) and (4):

p=ln-— 1=0+a(—n<x<n); 8=0+¢

T
where € is a nonessential constant arbitrarily chosen; for convenience, we let € = —(7 + B)/2.

Inserting the value of the biharmonic function @ into (1) and performing the necessary opera-
tions, we obtain expressions for the stresses and the displacement components, The arbitrary con—
stants aK, AK, pk, BK,ck, ck, dk DK are found from the Kelvin solution, but the arbltraryconstanta A¥,
b*, B* c¥* C* d¥* DKiare found from the boundary conditions at the wedge planes, The case is analyzed
where the wedge planes are free of stress, i.e., op=0and Tprg=0at 6 = gand 6 =7. Equating separately
to zero the cos mp terms and the sinmp terms in the integrands in the expressions for the stresses g4 and
Tpgat 8 =B and 8 = 7 we construct a system of eight equations, the solution of which yields the unknown
arbitrary constants.

According to the final stress and displacement formulas including the arbitrary constants, the stresses
vanish at infinity. The solution based on the biharmonic function & * is convergent for all points inside the
wedge. The convergence becomes slower as the point of force application approaches a wedgw plane. In
order to improve the convergence then, one must subtract the asymptotic values at m — « from the inte-
grands in the formulas for stresses and displacements, and then add them after they have been expressed
in terms of simplest functions.
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A CRITERION FOR EVALUATING THE EFFECT
OF RADIATION ON THE TOTAL HEAT
TRANSMISSION IN SEMITRANSLUCENT MEDIA

A. A. Men' and O. A. Sergeev . UDC 536.24

An analysis is made of methods published in the technical literature which are used for estimating
the effect of radiation on the heat transmission in materials where radiation is a secondary mechanism of
energy transfer (semitranslucent media). It is shown that the phenomenological theory, which is being
developed now, hinges on a stringent quantitative criterion for comparing various approximate models
with one another and with the exact solutions. The temperature drop AT =T; T, across a layer of semi-
translucent material is proposed to serve as such a criterion. This quantity is usually found in the course
of determining the temperature field with a given total (radiative and conductive) energy flux Q and a fixed
temperature T, at one of the layer boundaries. On the basis of the criterion, a comparison is made be-
ween the approximate analytical solutions to the problem of radiative— conductive heat transmission by
L. P. Filippov, by V. N. Adrianov, and by G. Poltz, and the exact computer solution of the integral equa-
tion describing the steady-state temperature distribution in a semitranslucent plate. Fused quartz has
been chosen as the specific material for this study. Temperature T; was varied from 400 to 1500°K. The
reflectivity of the layer boundaries was varied from 0 to 0.9.

Some results of the calculations are shown in Table 1. We note, for comparison, that without ac-
counting for radiation AT = 25°K for H; and AT =50°K for H, under the same conditions. Evidently, the
values for AT obtained by those few authors are considerably at variance. For a thin layer the Poltz solu-
tion is very close fo the exact one over the entire temperature range. As the layer becomes thicker, the
error of all approximate solutions increases rapidly.

TABLE 1. Magnitudes of the Temperature Drops (AT, °K) Obtained
by the Exact Numerical and by Approximate Analytical Solutions to
the Problem of Radiative-Conductive Heat Transmission

Thickness, mm Hy=5 [ H,=30
Temperature, °’K . 1500 1000 1500 1600
Optical thickness 0,070 0,138 0,420 0,828

Reflectivity of the

R o |05 {o6s | o lo5los| 0o | os {08 |0 |05]09
boundaries \
Exactsolution(comput~ .
er) ' ‘|4,05/ 8,7 17,8 |[10,0{15,8:21,7|1,95 4,05 |10,3 | 6,7]11,2{18,4
G. Poltz solution 3,9 18,4 17,4 | 9,815,5/20,8)1,78 3,10 | 7,8 | 6,4{10,0|14,4
L, P. Filippov solution
(optically thin layer)s,8 13,2 (23,3 113,7/20,324,9{2,4 (10,7 — | 6,2/29,8| —

V. N, Adrianov solution{7,3 (13,3 21,5 {14,7]19,7123,013,9 | 7,3 |11,0 112,8/17,8!23,8

Rosse land solution 0,23 0,23 10,23 | 1,4 1,4] 1,4{0,46| 0,46 | 0,46 | 2,8 2,8} 2,8

Original article submitted July 20, 1970; abstract submitted November 16, 1970.
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RADIATIVE HEAT TRANSMISSION THROUGH A

LAYER WITH A HIGH CONCENTRATION
OF PARTICLES

Yu. A. Popov UDC 536.3

The article deals with the transmittivity and the reflectivity of a layer containing coarse gray parti-
cles, Radiation impinging on the layer surface is hemispherical. In this case, when the particles occupy
a very small fraction of the total volume, vy « 1, the solution can be expressed by moments of the Ambar-
tsumyan functions ¢, 8; [1] tabulated in [2]. The following expression has been obtained in [1] for the re-
flectivity:

Ry (A, Tg) = 1 + A (atg0ty — BoBy) — 2224, 1

where ) denotes the probability of a photon surviving colllision, The dispersion indicatrix is spherical,
For the transmissivity the author has derived the following expression:

Dy (A, 1) = 2B, + A (o2 — “oﬁl)- (2)

The optical thickness of a layer 7 of a homogeneous medium is the ratio of the actual layer thickness to
the free path length of a photon {.

If one considers that the particles at the layer surface have flat boundaries coinciding with the bound-
ary planes of the layer, then for the mean values of R and D at any value of y one may write:
R v, ) =Ay+ (1 —7) Ro (b ), (3)
D v, t)=(1—9) Dy R, 7). (4)
Account is taken here of the radiation reflected by the particles at the layer boundary, while the amount of
radiation diffused in the interstitial space between particles is described in terms of conventional heat
transmission theory. The mean free path length of photons depends on y. Considering that the particles
are randomly distributed inthe medium but cannot occupy space where other particles are located, we have

1=
= ra (5)
where ny denotes the average number of pérticles per unit volume and ¢ denotes the median cross section
of a particle, Equation (5) is proved here by the method shown in {3].

LITERATURE CITED

1. V. V. Sobolev, Study Course in Theoretical Astrophysics [in Russian], Nauka (1967). .
2. Y. Soboyti, Astrophys. J. Suppl., 7, No, 72 (1963).
3. H. Haslam and H. C. Hottel, Trans. Amer. Soc. Mech. Engrs. (1928).

Polytechnical Institute Kirov. Original article submitted September 1, 1970; abstract submitted
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CALCULATION OF TRAJECTORIES OF MOTION
OF PARTICLES IN CURVED CHANNELS

D. T. Karpukhovich and K. F. Ivanov UDC 532.629+621,928,38

Physically the main point of the proposed calculation method consists in the fact that the trajectory of
motion of a particle can be divided into infinitesimally small sections, which can be replaced by linear seg-
ments, for which the use of a differential equation of motion of the particle in vector form is valid [1]:

A r By
m & = CF 2 (u —v)>
To solve this equation we represent it in the form of projections on the axis of the normal coordinate sys-
tem X, Y:

duy, av g
@t " Ja—via L 3 Tl o).

The equations will also have a similar form along the Y axis.

Cancelling the modulus of the relative velocity of particle motion [u—-v|, and expanding the value of
the quantities m and F, having first denoted the ratio 3vp, / 4’d2ps by 2, we obtain a system of equations,
which can be solved if the velocity components of the motion of the flow uy and u,, are known, Taking this
into account, the final solutions of the equations for the determination of the value of the projection of the
velocity vector of the motion of a particle and the position coordinate of a particle on the X and Y axes will
have the form

U = Upi + @M (s — 0x); X = 13+ oy
Oy = Uy; - it (uy; — )iy =y + toy;.

The value for the coefficient @; is taken from the appropriate table as a function of the Reynolds num-
ber

d
Regi = - V (i — 050)® + (ys — vy3)*

The calculation time interval between neighboring points of the trajectory t is taken equal to or less
than the particle relaxation time 7 = d’pg/ 18vpq. Inthis case the inertial path of the particle corresponds
to its assumed interval of motion.

The trajectories are constructed in a Cartesian coordinate system based on separate points whose
coordinates correspond to the x and y values,

The calculation method is illustrated by the example of an inertial dust collector of helical type.
Calculation results are compared with experiment.

The proposed simplified method of calculating trajectories can be used for curved streams with
various velocity distribution laws over the cross section and a variable radius of curvature,

The regime of particle motion can vary over a rather wide range of Reynolds numbers. If it not
necessary to use a computer for the numerical solution of the differential equations in the given case,
NOTATION

m, d, F are respectively the mass, diameter, and area of the midsection of a particle;.
v, u are respectively the velocity vector of the particle and of the gas flow;

s ‘is the density of a solid particle;

Pg is the density of the gas flow;

C is the coefficient of aerodynamic drag of the particle;
] is the coefficient of kinematic viscosity of the flow;

o is a coefficient,

Yaroslavskaya Region Branch, Institute for Industrial and Sanitary Gas Purification. Original article
submitted January 5, 1971; abstract submitted April 7, 1971.
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